Statistical Approximation Learning Method of Discontinuous Nonlinear Functions Using Simultaneous Recurrent Networks
نویسندگان
چکیده
منابع مشابه
A Statistical Approximation Learning Method for Simultaneous Recurrent Networks
In this paper, a statistical approximation learning (SAL) method is proposed for a new type of neural networks, simultaneous recurrent networks (SRNs). The SRNs have the capability to approximate non-smooth functions which cannot be approximated by using conventional multi-layer perceptrons (MLPs). However, the most of the learning methods for the SRNs are computationally expensive due to their...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Solving Nonlinear Equations Using Recurrent Neural Networks
Abstract A class of recurrent neural networks is developed to solve nonlinear equations, which are approximated by a multilayer perceptron (MLP). The recurrent network includes a linear Hopfield network (LHN) and the MLP as building blocks. This network inverts the original MLP using constrained linear optimization and Newton’s method for nonlinear systems. The solution of a nonlinear equation ...
متن کاملNonlinear Approximation of Random Functions
Given an orthonormal basis and a certain class X of vectors in a Hilbert space H, consider the following nonlinear approximation process: approach a vector x ∈ X by keeping only its N largest coordinates, and let N go to infinity. In this paper, we study the accuracy of this process in the case where H = L(I), and we use either the trigonometric system or a wavelet basis to expand this space. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2003
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.39.600